

PRELIMINARY Product Specification 10km Duplex SMF 400G CFP8 Optical Transceiver FTCD1314E1BCL

PRODUCT FEATURES

- Hot-pluggable CFP8 form factor
- Supports 425Gb/s aggregate bit rate
- Power dissipation < 16W
- RoHS-6 compliant
- Commercial case temperature range of 0°C to 70°C
- Single 3.3V power supply
- Maximum link length of 10km on Single Mode Fiber (SMF)
- 8x50G PAM4 DFB-based LAN-WDM transmitter
- 16x25G electrical interface
- Duplex LC receptacles
- MDIO management interface

APPLICATIONS

• 400GBASE-LR8 400G Ethernet

Finisar's FTCD1314E1BCL 400G CFP8 transceiver modules are designed for use in 400 Gigabit Ethernet interfaces over single mode fiber. They are compliant with the CFP MSA¹, IEEE P802.3bs 400GBASE-LR8² and 400GAUI-16². Digital diagnostics functions are available via the MDIO interface, as specified by the CFP MSA and Finisar Application Note AN-20xx⁴. The transceiver is RoHS compliant per Directive 2011/65/EU³.

PRODUCT SELECTION

FTCD1314E1BCL

- E: 400G Ethernet maximum bit rate (425 Gb/s)
- B: Bail type release
- C: Commercial temperature range
- L: LC receptacles

I. Pin Descriptions

CFP8 pin-out as being defined by CFP MSA¹.

	CFP8		CFP8
	Bottom		Тор
1	GND	124	GND
2	TX15n	123	TX14n
3	TX15p	122	TX14p
4	GND	121	GND
5	TX13n	120	TX12n
6	TX13p	119	TX12p
7	GND	118	GND
8	TX11n	117	TX10n
9 10	TX11p GND	116 115	TX10p GND
10	TX9n	 115	TX8n
12	ТХ9р	113	TX8p
13	GND	112	GND
14	TX7n	111	TX6n
15	ТХ7р	110	ТХ6р
16	GND	109	GND
17	TX5n	108	TX4n
18	TX5p	107	TX4p
19	GND	106	GND
20	TX3n	105	TX2n
21	ТХ3р	104	TX2p
22	GND TV1n	 103 102	GND TX0n
23 24	TX1n TX1p	102	TX0p
24	GND	 100	GND
26	GND (VND_IO_A)	99	REFCLKn (VND_IO_E)
27	3.3V	98	REFCLKp (VND_IO_D)
28	3.3V	97	GND
29	3.3V	96	TX_DIS (PRG_CNTL1)
30	3.3V	95	RX_LOS (PRG_ALRM1)
31	3.3V	94	MOD_LOPWR
32	3.3V	93	MOD_ABS
33	3.3V	92	MDC
34	3.3V	91	MDIO
35	GND	90	MOD_SELn
36 37	MCLKn (VND_IO_B)	 89	GLB_ALRMn MOD_RSTn
37	MCLKp (VND_IO_C) GND	88 87	GND_KSTN
39	RX15n	86	RX14n
40	RX15p	 85	RX14p
40	GND	84	GND
42	RX13n	83	RX12n
43	RX13p	82	RX12p
44	GND	81	GND
45	RX11n	80	RX10n
46	RX11p	 79	RX10p
47	GND	78	GND
48	RX9n	77	RX8n
49 50	RX9p GND	76 75	RX8p GND
50	RX7n	75	RX6n
52	RX7p	73	RX6p
53	GND	72	GND
54	RX5n	71	RX4n
55	RX5p	70	RX4p
56	GND	69	GND
57	RX3n	68	RX2n
58	RX3p	67	RX2p
59	GND	 66	GND
60	RX1n	65	RX0n
61	RX1p	64	RX0p
62	GND	63	GND

II. Absolute Maximum Ratings

Module performance is not guaranteed beyond the operating range (see Section VI). Exceeding the limits below may damage the transceiver module permanently.

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Maximum Supply Voltage	Vcc	-0.5		3.6	V	
Storage Temperature	Ts	-40		85	°C	
Case Operating Temperature	T _{OP}	0		70	°C	1
Relative Humidity	RH	15		85	%	2
Receiver Damage Threshold, per Lane	P _{Rdmg}	5.5			dBm	

Notes:

1. 48-hour excursions, maximum

2. Non-condensing.

III. Electrical Characteristics (EOL, T_{OP} = 0 to 70 °C, V_{CC} = 3.2 to 3.4 Volts)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Supply Voltage	Vcc	3.2		3.4	V	
Supply Current	Icc			5.1	А	1
Module total power	Р			16	W	2
Transmitter						
Signaling rate per lane		26.5	625±100 p	pm.	Gb/s	
Differential data input voltage per lane	Vin,pp,diff	900			mV	
Differential input return loss		Per equation (83E–5) IEEE802.3bm		dB		
Differential to common mode input return loss		Per equation (83E–6) IEEE802.3bm		dB		
Differential termination mismatch				10	%	
Single-ended voltage tolerance	Vin,pp	-0.35		+3.3	V	
Module stress input test		See 83E.3.4.1 IEEE802.3bm			3	
Single-ended voltage tolerance range		-0.4		3.3	V	
DC common mode voltage		-350		2850	mV	4

1. Steady state, calculated at 16W and 3.135V

2. Maximum total power value is specified across the full temperature and voltage range

3. Meets BER specified in IEEE802.3bm 83E.1.1

4. DC common mode voltage generated by the host. Specification includes effects of ground offset voltage

Receiver						
Signaling rate per lane		26.5625±100 ppm.			Gb/s	
AC common-mode output voltage (RMS)				17.5	mV	
Differential output voltage				900	mV	
Eye width		0.57			UI	
Eye height, differential		228			mV	
Vertical eye closure	VEC			5.5	dB	
Differential output return loss		Per equation 83E-2 IEEE802.3bm				
Common to differential mode conversion return loss		Per equation 83E-3 IEEE802.3bm				
Differential termination mismatch				10	%	
Transition time (min, 20% to 80%)		12			ps	
DC common mode voltage (min)		-350		2850	mV	1

1. DC common mode voltage is generated by the host. Specification includes effects of ground offset voltage

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Transmitter						
Signaling rate (each lane (range)		26.5625 ± 100 ppm			GBd	
Modulation format			PAM4			
Lane wavelengths (range)		1272.55 to 1274.54 1276.89 to 1278.89 1281.25 to 1283.27 1285.65 to 1287.68 1294.53 to 1296.59 1299.02 to 1301.09 1303.54 to 1305.63 1308.09 to 1310.19			nm	
Side-mode suppression ratio (SMSR)		30	00.07 to 151	0.17	dB	
Total average launch power				13.2	dBm	
Average launch power, each lane				5.3	dBm	1
Average launch power, each lane		-2.8			dBm	2
Outer Optical Modulation Amplitude (OMAouter), each lane		0.2		5.7	dBm	3
Difference in launch power between any two lanes (OMAouter)				4	dB	
Launch power in OMAouter minus TDECQ, each lane		-1.1			dBm	
Transmitter and dispersion eye closure for PAM4 (TDECQ), each lane				3.3	dB	
Average launch power of OFF transmitter, each lane				-30	dBm	
Extinction ratio		3.5			dB	
RIN _{15.1} OMA				-132	dB/Hz	
Optical return loss tolerance				15.1	dB	
Transmitter reflectance				-26	dB	4

Meets 400GBASE-LR8 as being defined by IEEE P802.3bs

1. As the total average launch power limit has to be met, not all of the lanes can operate at the maximum average launch power, each lane.

2. Average launch power, each lane (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.

3. Even if the TDECQ < 1 dB, the OMAouter (min) must exceed this value

4. Transmitter reflectance is defined looking into the transmitter

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Receiver	-	•				
Signaling rate (each lane (range)		26.5625 ± 100 ppm			GBd	
Modulation format			PAM4			
		12	272.55 to 127	74.54	nm	
		12	276.89 to 127	78.89		
		12	281.25 to 128	33.27		
I and wavelengths (range)		12	285.65 to 128	87.68		
Lane wavelengths (range)		12	294.53 to 129	96.59		
		12	299.02 to 130)1.09		
			303.54 to 130			
		13	308.09 to 13			
Damage threshold, each lane			6.3		dBm	1
Average receive power, each lane				5.3	dBm	
Average receive power, each lane		-8.6			dBm	2
Receive power (OMAouter), each lane				5.7	dBm	
Difference in receive power between				4.5	dBm	
any two lanes (OMAouter)						
Receiver reflectance				-26	dB	
Receiver sensitivity (OMAouter),				-7.1	dBm	3
each lane				7.1		
Stressed receiver sensitivity				-4.7	dBm	4
(OMAouter), each lane				/		
Conditions of stressed receiver sensitivit	y test:	1				1
Stressed eye closure for PAM4		3.3			dB	5
(SECQ), lane under test						_
OMAouter of each aggressor		-0.2			dBm	
lane			÷.=			

1. The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level.

Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A
received power below this value cannot be compliant; however, a value above this does not ensure
compliance.

3. Receiver sensitivity (OMAouter), each lane (max) is informative.

4. Measured with conformance test signal at TP3 (see 122.8.9) for the BER specified in 122.1.1.

5. These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

V. General Specifications

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Bit Rate (all wavelengths combined)	BR			425	Gb/s	1
Bit Error Ratio	BER			2x10 ⁻⁴		2
Maximum Supported Distances						
Fiber Type						
SMF per G.652	Lmax1			10	km	

Notes:

1. Supports 400GBASE-LR8 per IEEE P802.3bs.

2. As defined by IEEE P802.3bs.

Timing Parameters

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Time for Rx recovery after LOS			0.45	2	S	

VI. Environmental Specifications

Finisar FTCD1314 CFP8 transceivers have a commercial operating case temperature range of 0° C to +70°C.

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Case Operating Temperature	T _{op}	0		70	°C	
Storage Temperature	T _{sto}	-40		85	°C	

VII. Regulatory Compliance

Finisar FTCD1314 CFP8 transceivers are Class 1 Laser Products. They are certified per the following standards:

Feature	Agency	Standard	Certificate Number
Laser Eye Safety	FDA/CDRH	CDRH 21 CFR 1040 and Laser Notice 50	TBD
Laser Eye Safety	TÜV	EN 60825-1: 2007 IEC 60825-2: 2004+A1+A2	TBD
Electrical Safety	TÜV	EN 60950	TBD
Electrical Safety	UL/CSA	CLASS 3862.07 CLASS 3862.87	TBD

Copies of the referenced certificates are available at Finisar Corporation upon request. Complies with FDA performance standards for laser products except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.

VIII. Digital Diagnostics Functions

FTCD1314 CFP8 transceivers support the MDIO-based diagnostics interface specified in the CFP MSA¹. See Finisar Application Note AN-20xx (TBD).

IX. Memory Contents

Per the CFP MSA¹. See Finisar Application Note AN-20xx (TBD).

X. Host PCB Layout and Bezel Recommendations

Per CFP MSA Hardware Specification for CFP8¹.

XI. Mechanical Specifications

Finisar FTCD1314 CFP8 transceivers are compatible with the CFP MSA specification for CFP8 pluggable form factor modules.

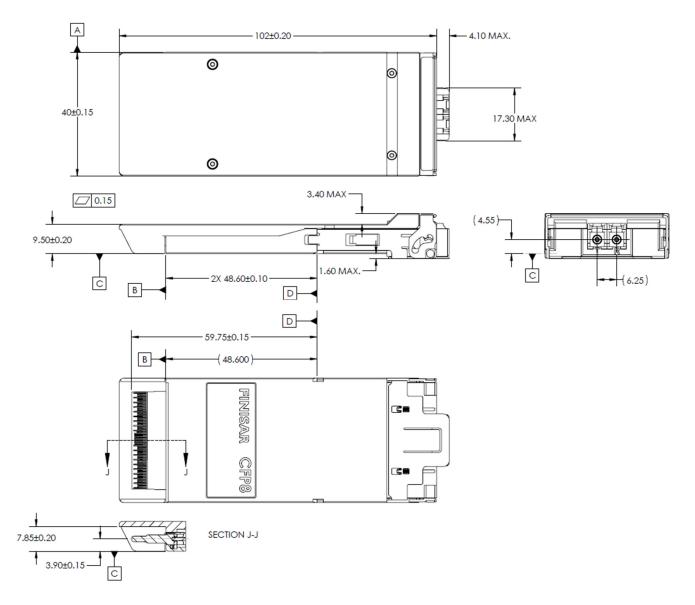


Figure 1. FTCD1314E1BCL Mechanical Dimensions (Bail version)

Figure 2. Standard Product Label

XII. References

- 1. CFP8 Hardware Specification and CFP MSA Management Interface Specifications (MIS), Rev TBD.; CFP MSA, <u>www.cfp-msa.org</u>
- 2. IEEE P802.3bs, PMD Type 400GBASE-LR8, 400GAUI-16 electrical interface
- 3. Directive 2011/65/EU of the European Parliament and of the Council, "on the restriction of the use of certain hazardous substances in electrical and electronic equipment." Certain products may use one or more exemption as allowed by the directive.
- 4. Application Note AN-20xx (TBD), Finisar Corporation.

For More Information:

Finisar Corporation 1389 Moffett Park Drive Sunnyvale, CA 94089-1133 Tel. 1-408-548-1000 Fax 1-408-541-6138 sales@finisar.com www.finisar.com