Finisar

Product Specification

10Gb/s, 80km Single Mode, Multi-Rate SFP+ Transceiver FTLX1871M3BNL

PRODUCT FEATURES

- Hot-pluggable SFP+ footprint
- Supports 8.5 and 9.95 to 11.3 Gb/s
- 80km link length
- 1600ps/nm chromatic dispersion tolerance
- -5/85°C case temperature range
- Internal transmitter/receiver CDR
- 1.8W/2.0W power consumption options
- Cooled 1550nm EML laser
- Limiting electrical interface receiver
- Duplex LC connector
- Built-in digital diagnostic functions
- RoHS-6 compliant (lead-free)

APPLICATIONS

- SONET OC-192, SDH STM-64 and OTN G.959.1 P1L1-2D2
- 10G Ethernet ZR and 10G Fibre Channel
- OTN G.709 OTU1e/2/2e FEC bit rates
- 8.5Gb/s Fibre Channel

Finisar's FTLX1871M3BNL transceivers are Enhanced Small Form Factor Pluggable SFP+ transceivers designed for use in 10-Gigabit multi-rate links up to 80km of G.652 single mode fiber. They are compliant with SFF-8431¹, SFF-8432² and G.959.1 P1L1-2D2, and support SONET OC-192, SDH STM-64, 10G Ethernet ZR and 10G Fibre Channel. Finisar's FTLX1871M3BNL transceivers use internal transmitter and receiver retimer units (a.k.a. clock data recovery or CDR). This guarantees compliance with the SONET/SDH jitter requirements and it can be used to set the electrical interface to be XFI-compliant.

Digital diagnostics functions are available via a 2-wire serial interface, as specified in SFF-8472³. Finisar's FTLX1871M3BNL transceivers are RoHS compliant^{4,5}.

PRODUCT SELECTION

FTLX1871M3BNL

I. Pin Descriptions

Pin	Symbol	Name/Description	Ref.
1	V_{EET}	Transmitter Ground	1
2	T_{FAULT}	Transmitter Fault	2
3	T_{DIS}	Transmitter Disable. Laser output disabled on high or open.	3
4	SDA	2-wire Serial Interface Data Line	2
5	SCL	2-wire Serial Interface Clock Line	2
6	MOD_ABS	Module Absent. Grounded within the module	2
7	RS0	Rate Select 0.	4
8	RX_LOS	Loss of Signal indication. Logic 0 indicates normal operation.	5
9	RS1	Rate Select 1.	4
10	$ m V_{EER}$	Receiver Ground	1
11	$ m V_{EER}$	Receiver Ground	1
12	RD-	Receiver Inverted DATA out. AC Coupled.	
13	RD+	Receiver Non-inverted DATA out. AC Coupled.	
14	$ m V_{EER}$	Receiver Ground	1
15	V_{CCR}	Receiver Power Supply	6
16	V_{CCT}	Transmitter Power Supply	6
17	$ m V_{EET}$	Transmitter Ground	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	V_{EET}	Transmitter Ground	1

Notes:

- 1. Circuit ground is internally isolated from chassis ground.
- 2. T_{FAULT} is an open collector/drain output, which should be pulled up with a 4.7k-10k Ohms resistor on the host board if intended for use. Pull up voltage should be between 2.0V to Vcc+0.3V. A high output indicates a transmitter fault caused by either the TX bias current or the TX output power exceeding the preset alarm thresholds. A low output indicates normal operation. In the low state, the output is pulled to <0.8V.
- 3. Laser output disabled on $T_{DIS} > 2.0V$ or open, enabled on $T_{DIS} < 0.8V$.
- 4. Internally pulled down per SFF-8431 Rev 4.1. See Sec. X of this datasheet for the logic table to use for the internal CDRs locking modes.
- 5. LOS is open collector output. Should be pulled up with $4.7k 10k\Omega$ on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.
- 6. Internally connected

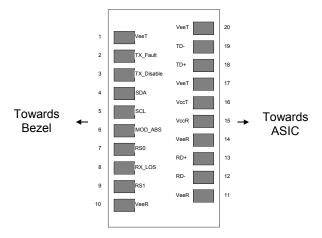


Figure 1. Diagram of Host Board Connector Block Pin Numbers and Names.

II. Absolute Maximum Ratings

Exceeding the limits below may damage the transceiver module permanently.

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Maximum Supply Voltage	Vcc	-0.5		4.0	V	
Storage Temperature	T_{S}	-40		85	°C	
Relative Humidity	RH	0		85	%	1
Receiver Optical Damage Threshold	RxDamage	5			dBm	

Notes:

1. Non-condensing

III. Electrical Characteristics ($T_{OP} = -5 \text{ to } 85 \text{ }^{\circ}\text{C}$)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Supply Voltage	Vcc	3.14	3.30	3.46	V	
Transmitter (Tx)						
Input differential impedance	R _{in}	80	100	120	Ω	
Differential data input swing	Vin,pp	120		850	mV	1
Transmit Disable Voltage	V_{D}	V_{cc} -0.8		V_{cc}	V	
Transmit Enable Voltage	$V_{\rm EN}$	0		0.8	V	
Receiver (Rx)						
Output differential impedance	R _{out}	80	100	120	Ω	
Differential data output swing	V _{out} ,pp	300		850	mV	1
Output rise time and fall time	T_r, T_f	28			ps	2
LOS asserted	$V_{LOS\ A}$	V_{cc} -0.8		V_{cc}	V	3
LOS de-asserted	$V_{LOS\ D}$	0		0.8	V	3
Power Supply Noise Tolerance	VccT/VccR	Per SI	FF-8431 I	Rev 4.1	mVpp	4
Power Consumption						
Tx and Rx CDR's ON				2.0	W	5
Tx CDR OFF and Rx CDR ON	P_{diss}			1.9	W	5
Tx & Rx CDR's OFF and Ethernet spec.				1.8	W	5

Notes:

- 1. Internally AC coupled. Data pins connect directly to the CDR.
- 2. 20 80%. Measured with Module Compliance Test Board and OMA test pattern. Use of four 1's and four 0's sequence in the PRBS 9 is an acceptable alternative. SFF-8431 Rev 4.1.
- 3. LOS is an open collector output. Should be pulled up with $4.7k\Omega 10k\Omega$ on the host board. Normal operation is logic 0; loss of signal is logic 1.
- 4. See Section 2.8.3 of SFF-8431 Rev 4.1.
- 5. Power consumption values are measured at 3.3V, 85°C case temperature and beginning of life.

IV. Optical Characteristics ($T_{OP} = -5$ to 85 °C, $V_{CC} = 3.14$ to 3.46 Volts)

Parameter			Symbol	Min	Тур	Max	Unit	Ref.
Transmitter (
Average Launch Power			P _{AVE}	0		4	dBm	
Optical Wavel	ength		λ	1530		1565	nm	
Side-Mode Su	ppression Ratio		SMSR	30			dB	
Optical Extinc			ER	9			dB	
Average Laune	ch power when Tx is	OFF	P _{OFF}			-30	dBm	
	on 20kHz-80MHz, pe		$Tx_{ipk2pk1}$			0.3	UI	1
Jitter Generation	on 4MHz-80MHz, pe	ak to peak	$Tx_{jpk2pj2}$			0.1	UI	1
Relative Intens	sity Noise		RIN			-128	dB/Hz	
Receiver (Rx))							
Optical Center	Wavelength		λ_{C}	1260		1600	nm	
Receiver Refle	ectance		R_{rx}			-27	dB	
	Bit Rate (Gb/s)	BER						
Sensitivity	8.5, 9.95-10.7	<10 ⁻¹²	R _{SENS1}			-24	dBm	2,3
(0km)	11.1	<10 ⁻¹²	R _{SENS2}			-23	dBm	1,2 1,2
(OKIII)	11.1	<10 ⁻⁴	R _{SENS3}			-27	dBm	1,2
	11.3	<10 ⁻⁴	R _{SENS4}			-27	dBm	1,2
Sensitivity	8.5, 9.95-10.7	<10 ⁻¹²	R _{SENS5}			-22	dBm	4
(80km)	11.1	<10 ⁻⁴	R_{SENS6}			-25	dBm	4
Overload (Ave			$\begin{array}{c} P_{AVE} \\ LOS_D \end{array}$	-7			dBm	
	LOS De-Assert					-28	dBm	
LOS Assert			LOS_A	-37		-30	dBm	
LOS Hysteresis			LOS_{H}	0.5			dB	
Path Penalty	Bit Rate (Gb/s)	BER						
	8.5, 9.95	<10 ⁻¹²	PP ₁			2	dB	1,5.a
	10.3-10.7	<10 ⁻¹²	PP ₂			3	dB	1,5.a
	11.1	<10 ⁻⁴	PP ₃			3	dB	1,5.b
	11.3	<10 ⁻⁴	PP_4			3	dB	1,5.c

Notes:

- 1. Performance guaranteed with the internal CDRs enabled and locked.
- 2. Measured with worst ER=9 dB; PRBS $2^{31} 1$.
- 3. For 10G Ethernet application, -24dBm is equivalent to an OMA of -22.09dBm for an ER = 9 dB.
- 4. Performance guaranteed with the internal CDRs in by-pass mode. The receiver sensitivity over fiber measured with the CDRs OFF may vary depending on the external (host) CDR model.
- 5. Max chromatic dispersion tolerance over 80km of G.652 single mode fiber:
 - a. 1600ps/nm
 - b. 1450ps/nm
 - c. 1300ps/nm

V. General Specifications

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Bit Rate	BR	8.5		11.3168	Gb/s	1
Max. Supported Link Length	L_{MAX}			80	km	2

Notes:

- $\overline{1}$. Tested with a $2^{31} 1$ PRBS pattern at the BER defined in Table IV.
- 2. Over G.652 single mode fiber.

Timing Parameters

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Time to initialize	t_start_up			10	S	

VI. Environmental Specifications

Finisar FTLX1871M3BNL transceivers have an operating temperature range from - 5°C to +85°C case temperature.

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Case Operating Temperature	T_{op}	-5		85	°C	
Storage Temperature	T_{sto}	-40		85	°C	

VII. Regulatory Compliance

Finisar transceivers are Class 1 Laser Products and comply with US FDA regulations. These products are certified by TÜV and CSA to meet the Class 1 eye safety requirements of EN (IEC) 60825 and the electrical safety requirements of EN (IEC) 60950. Copies of certificates are available at Finisar Corporation upon request.

VIII. Digital Diagnostic Functions

Finisar FTLX1871M3BNL SFP+ transceivers support the 2-wire serial communication protocol as defined in the SFP MSA¹. It is very closely related to the E²PROM defined in the GBIC standard, with the same electrical specifications.

The standard SFP serial ID provides access to identification information that describes the transceiver's capabilities, standard interfaces, manufacturer, and other information.

Additionally, Finisar SFP+ transceivers provide a enhanced digital diagnostic monitoring interface, which allows real-time access to device operating parameters such as transceiver temperature, laser bias current, transmitted optical power, received optical power and transceiver supply voltage. It also defines a sophisticated system of alarm and warning flags, which alerts end-users when particular operating parameters are outside of a factory set normal range.

The SFP MSA defines a 256-byte memory map in E²PROM that is accessible over a 2-wire serial interface at the 8 bit address 1010000X (A0h). The digital diagnostic monitoring interface makes use of the 8 bit address 1010001X (A2h), so the originally defined serial ID memory map remains unchanged. The interface is identical to, and is thus fully backward compatible with both the GBIC Specification and the SFP Multi Source Agreement. The complete interface is described in Finisar Application Note AN-2030: "Digital Diagnostics Monitoring Interface for SFP Optical Transceivers".

The operating and diagnostics information is monitored and reported by a Digital Diagnostics Transceiver Controller (DDTC) inside the transceiver, which is accessed through a 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL, Mod Def 1) is generated by the host. The positive edge clocks data into the SFP transceiver into those segments of the E²PROM that are not write-protected. The negative edge clocks data from the SFP transceiver. The serial data signal (SDA, Mod Def 2) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.

For more information, please see the SFP MSA documentation³ and Finisar Application Note AN-2030⁷.

Please note that evaluation board FDB-1027 is available with Finisar ModDEMO software that allows simple to use communication over the 2-wire serial interface.

IX. Digital Diagnostic Specifications

FTLX1871M3BNL transceivers can be used in host systems that require either internally or externally calibrated digital diagnostics.

Parameter	Symbol	Units	Min	Max	Accuracy	Ref.
Accuracy						
Transceiver temperature	$\Delta \mathrm{DD}_{\mathrm{Temp}}$	°C	-5	+85	±5°C	1
Transceiver supply voltage	$\Delta DD_{Voltage}$	V	2.8	4.0	±3%	
Transmitter bias current	ΔDD_{Bias}	mA	0	127	±10%	2
Transmitter output power ΔDD		dBm	-1	+5	±2dB	
Receiver average optical input power	$\Delta DD_{Rx-Power}$	dBm	-28	-5	±2dB	

Notes: 1. Int

- 1. Internally measured
- 2. The accuracy of the Tx bias current is 10% of the actual current from the laser driver to the laser

X. Internal CDR's Locking Modes

The FTLX1871M3BNL is equipped with internal CDR units on both the receiver and the transmitter sides. The host can set the CDR's to lock at 8.5Gb/s, 10G (9.95-11.3Gb/s), or in by-pass mode, by setting the rate select pins or the soft bits (logic OR). The different locking modes are shown in the following logic table:

R/S 0	R/S 1	CDR's
Logic OR of:	Logic OR of:	Looking Mada
pin 7 & bit 110.3	pin 9 & bit 118.3	Locking Wode
Low or 0	Low or 0	Both CDR's lock at 8.5Gb/s
Low or 0	High or 1	Tx CDR is in bypass mode.
Low of 0	nigh of 1	Rx CDR locks at 10G (9.95-11.3Gb/s)
High or 1	Low or 0	Tx & Rx CDR's in bypass mode
High or 1	High or 1	Both CDR's lock at 10G (9.95-11.3Gb/s)
High or 1	High or 1	The bits 110.3 and 118.3 are set to 1 by default at power-up

The RS0 and RS1 pins are internally pulled-down to ground as per [1]. The soft bits 110.3 and 118.3 are both set to "1" at the transceiver power-up, to select the 10G locking mode by default. The host can change this configuration via the 2-wire communication as described in the SFP MSA [1]. Alternative configurations can be factory set upon request. Please refer to Finisar for additional details.

XI. SFF-8431 Power-up Sequence

If either CDR is enabled, the typical power consumption of the FTLX1871M3BNL may exceed the limit of 1.5W specified for the Power Level II transceivers in [1], for which a power-up sequence is recommended. However, the FTLX1871M3BNL is factory set to power-up directly to its operating conditions. Upon request, it can be factory set to follow the power-up sequence specified for transceivers exceeding 1W, as per [1]. In power level I, the FTLX1871M3BNL does not carry traffic, but the 2-wire serial communication is active.

Please refer to [1] and Finisar Application Note AN-2076 for additional details.

XII. Mechanical Specifications

Finisar FTLX1871M3BNL SFP+ transceivers are compatible with the SFF-8432 specification for improved pluggable form factor, and shown here for reference purposes only. Bail color is white.

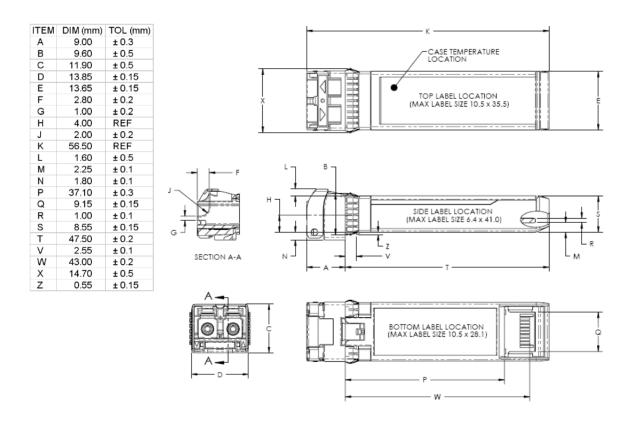


Figure 2. Mechanical Dimensions

Note: the option of the label on the top side of the transceiver is not recommended.

XIII. Host Board SFP+ Connector Recommendations

⚠atum and Basic Dimension Established by Customer ⚠Rads and Vias are Chassis Ground, 11 Places ⚠Through Holes are Unplated

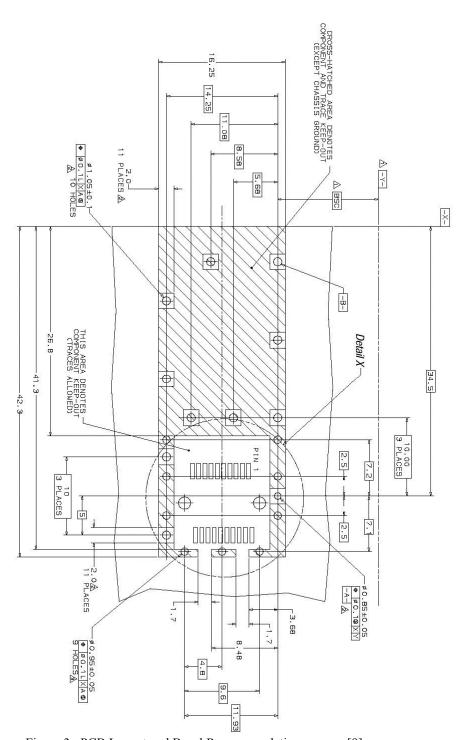
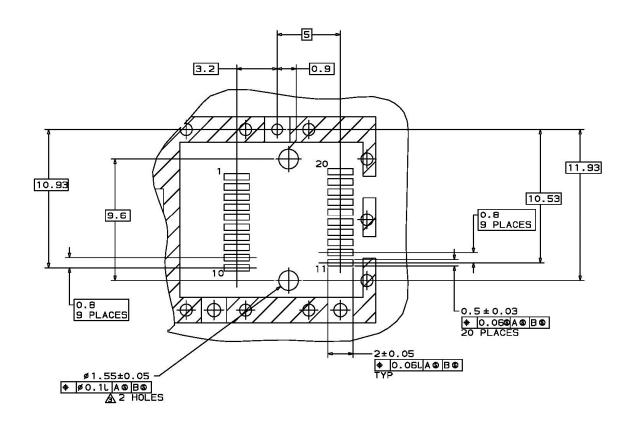
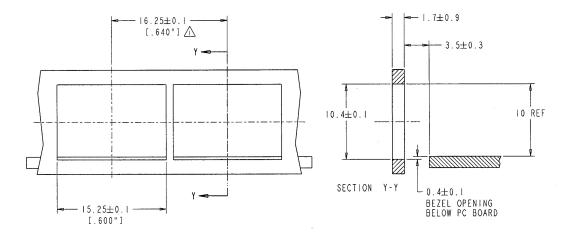




Figure 3. PCB Layout and Bezel Recommendations, as per [9]


NOTES:

 $\stackrel{\textstyle \frown}{\bigtriangleup}$ MINIMUM PITCH ILLUSTRATED, ENGLISH DIMENSIONS ARE FOR REFERENCE ONLY

2. NOT RECOMMENDED FOR PCI EXPANSION CARD APPLICATIONS

Figure 4

XIV. Host-Module Interface Diagram

XV. References

- 1. "Specifications for Enhanced 8.5 and 10 Gigabit Small Form Factor Pluggable Module 'SFP+ '", SFF Document Number SFF-8431, Revision 4.1, including SFF-8431 Rev 4.1 Addendum. September 15, 2013.
- 2. "Improved Pluggable Form factor", SFF Document Number SFF-8432, Revision 4.2, April 18, 2007.
- 3. "Digital Diagnostics Monitoring Interface for Optical Transceivers". SFF Document Number SFF-8472, Revision 10.1, March 1, 2007.
- 4. Directive 2011/65/EU of the European Council Parliament and of the Council, "on the restriction of the use of certain hazardous substances in electrical and electronic equipment". 08-June 2011, which supersedes the previous ROHS Directive 2002/95/EC.
- 5. "Application Note AN-2038: Finisar Implementation of RoHS Compliant Transceivers", Finisar Corporation, January 21, 2005.
- 6. Small Form-factor Pluggable (SFP) Transceiver Multi-Source Agreement (MSA)
- 7. "Application Note AN-2030: Digital Diagnostic Monitoring Interface for SFP Optical Transceivers"

XVI. For More Information

Finisar Corporation 1389 Moffett Park Drive Sunnyvale, CA 94089-1133 Tel. 1-408-548-1000 Fax 1-408-541-6138 sales@finisar.com www.finisar.com