

ADBS-A350: Optical Finger Navigation Chip

Description

The ADBS-A350 chip is a small form factor (SFF) LED illuminated optical finger navigation system. It is designed with low-power architecture and automatic power management modes, making it ideal for battery-and power-sensitive applications such as mobile phones.

The ADBS-A350 is capable of high-speed motion detection— up to 20 ips. In addition, it has an on-chip oscillator and integrated LED to minimize external components. The chip is programmed via registers through either a serial peripheral interface or a two wire interface port.

It is packaged in a 28 I/O surface mountable package. There are no moving parts, thus provide high reliability and less maintenance for the end user. In addition, precision optical alignment is not required, facilitating high volume assembly. The ADBS-A350 is designed for use with ADBL-A321 lens. The ADBL-A321 lens is the optical component necessary for proper operation of the chip.

Theory of Operation

The ADBS-A350 is based on Optical Finger Navigation (OFN) Technology, which measures changes in position by optically acquiring sequential surface images (frames) and mathematically determining the direction and magnitude of movement.

The ADBS-A350 contains an Image Acquisition System (IAS), a Digital Signal Processor (DSP), and a communication system. The IAS acquires microscopic surface images via the lens and illumination system. These images are processed by the DSP to determine the direction and distance of motion. The DSP calculates the Δx and Δy relative displacement values. The host reads the Δx and Δy information from the chip serial port if a motion interrupt is published. The microcontroller then translates the data into cursor navigation, rocker switch, and scrolling or other system dependent navigation data.

Features


- Low power architecture
- Surface mount technology (SMT) device
- Self-adjusting power-saving modes for longer battery life
- High speed motion detection up to 20 ips
- Self-adjusting frame rate for optimum performance
- Motion detect interrupt
- Finger detect interrupt
- Soft click and Tap detect interrupt
- Single Interrupt pin
- Optional PWM output for LED illumination
- Optional switch input for center click function
- Internal oscillator no clock input needed
- Selectable 125, 250, 500, 750, 1000 and 1250 cpi resolution
- Single 1.8 V supply voltage for analog and digital
- Internal power up reset (POR)
- Selectable Input/Output voltage at 1.8 V or 2.8 V nominal
- 4-wire Serial peripheral interface (SPI) or Two-wire interface (TWI)
- Integrated chip-on-board LED with wavelength of 870 nm

Applications

- Finger input devices
- Mobile devices
- Integrated input devices
- Battery-powered input device

Ordering Information

Part Number	Туре
ADBS-A350	28-pin SMD
ADBL-A321	Lens

PixArt customers purchasing the ADBS-350 OFN product are eligible to receive a royalty free license to our US patents 6977645, 6621483, 6950094, 6172354 and 7289649, for use in their end products.

Device Pinout

Pin	Name	Description	Input/Output pin	Function
1	GND	Ground		
2	XY_LED	XY LED driver		Must connect to LED-
		connection		(see schematics Figure 7a, 7b)
3	EVENT_INT	Event Interrupt	O (CMOS output)	Open when not used
		(active low output)		Default active low signal, can be changed in
				Event control register 0x1d
4	GPIO	General Purpose	I (Schmitt trigger input)/ (OPin can be used for FPD output, PWM output
		Input/ Output	(CMOS output)	or Dome/Button click input. If configure as
				input do not leave pin unconnected
5	VDDIO	Voltage supply for		Supply 1.8 V or 2.8 V
		Input/ Output pins		
6	IO_MOSI_A0	TWI address set or	I (Schmitt trigger input)	SPI : MOSI (Master Out Slave In) signal
		Master Out Slave In		TWI Address Select, A0
				Do not leave pin unconnected
7	IO_CLK	Serial clock input	I (Schmitt trigger input)	Serial clock signal
8	IO_MISO_SDA	TWI serial data or	In SPI – CMOS output. In	SPI : MISO (Master Input Slave Out) signal
		Master In Slave Out	TWI – open drain I/O	TWI : serial data signal
9	IO_NCS_A1	TWI address set or	I (Schmitt trigger input)	SPI : NCS (chip select) active low signal
		Chip Select		TWI Address Select, A1
				Do not leave pin unconnected
10	NRST	Hardware Chip Reset	I (Schmitt trigger input)	Set to high when not used. Active low signal
11	GND	Ground		
12	NC	No Connect		No connection
13	SHTDWN	Shutdown	I (Schmitt trigger input)	Set to low when not used
		(active high input)		Active high signal
14	VDDIO	Voltage supply for I/C)	Sets I/O voltage
15	IO_SELECT	SPI / TWI Select	I (Schmitt trigger input)	TWI : GND or SPI : High
16	NC	No Connect		No connection
17	NC	No Connect		No connection
	NC	No Connect		No connection
	NC	No Connect		No connection
20	VDD	Voltage supply		Supply 1.8 V
21	GND	Ground		
22	GND	Ground		
	NC	No Connect		No connection
	LED-	LED Cathode		Must connect to XY_LED
	LED-	LED Cathode		Must connect to XY_LED
	LED-	LED Cathode		Must connect to XY_LED
27	LED+	LED Anode		Provide 1.8 V supply voltage
	GND	Ground		

Note: NC pins can be tied to VDD, GND or left open/ unconnected.

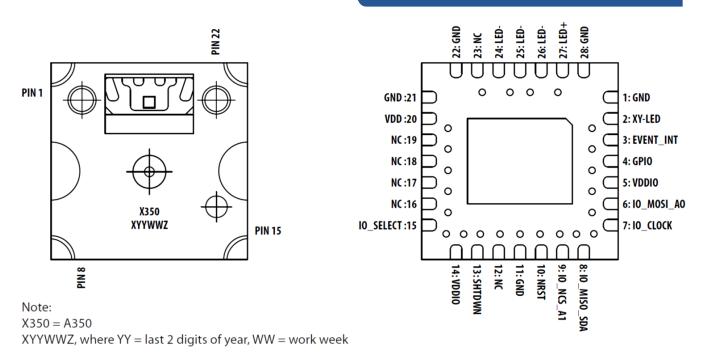


Figure 1. Package outline drawing

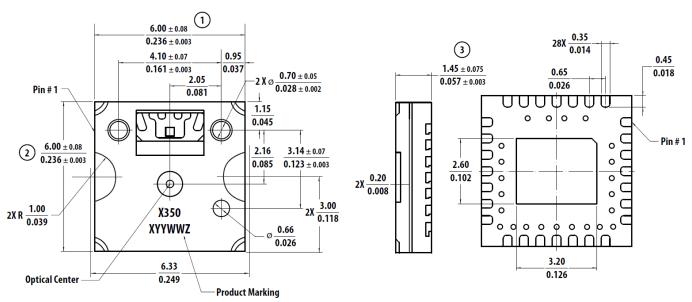


Figure 2. Package outline drawing

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Overview of Optical Chip Assembly

PixArt Imaging provides an IGES file drawing describing the cover plate molding features.

Chip Assembly

The components interlock as they are mounted onto defined features on the cover plate. The ADBS-A350 chip is designed for surface mounting on a PCB, looking up. There is an aperture stop and features on the package that align to the lens.

The lens provides optics for the imaging of the surface as well as illumination of the surface at the optimum angle. Features on the lens align it to the chip and cover plate. Contamination must be kept away from the lens. During assembly process, it is recommended to use a minimum of a 10K clean room environment or equivalent laminar flow workbench.

PCB Assembly Considerations

- 1. Surface mount the chip and all other electrical components into PCB.
- 2. Reflow the entire assembly in a no-wash solder process.
- 3. Remove the protective kapton tape from optical aperture of the chip and LED. Care must be taken to keep contaminants from entering the aperture. Recommend not to place the PCB facing up during the entire assembly process. Recommend to hold the PCB first vertically for the kapton removal process.
- 4. Press fit the lens onto the chip until there is no gap between the lens and chip, with force up to maximum 2.2 kgf. Care must be taken to avoid contaminating or staining the lens. The lens piece has alignment posts which will mate with the alignment holes on the chip package.
- 5. Place and secure the optical navigation cover onto the lens to ensure the chip and lens components are always interlocked to the correct vertical height. The cover design has a foolproof feature to avoid wrong orientation of the cover.
- 6. The optical position reference for the PCB is set by the navigation cover and lens.
- 7. Install device top casing. There MUST be a feature in either top casing or bottom casing to press onto the chip to ensure the chip and lens components are always interlocked to the correct vertical height.

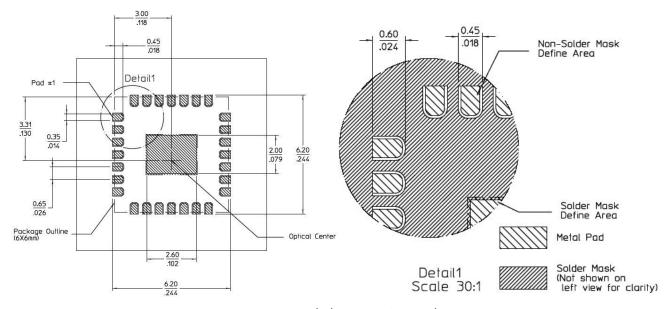


Figure 3. Recommended PCB PADOUT and spacing

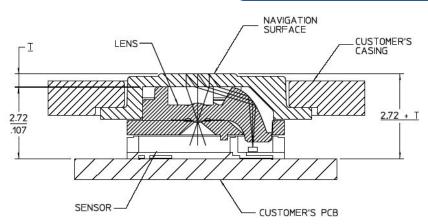


Figure 4. 2D Assembly drawing of ADBS-A350

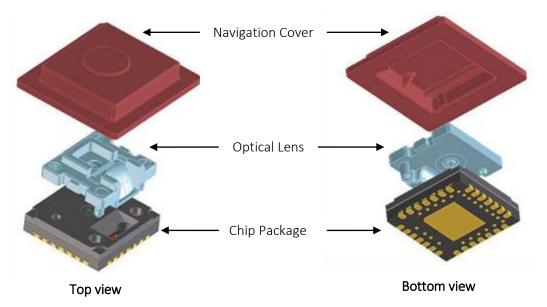


Figure 5. Exploded Top view

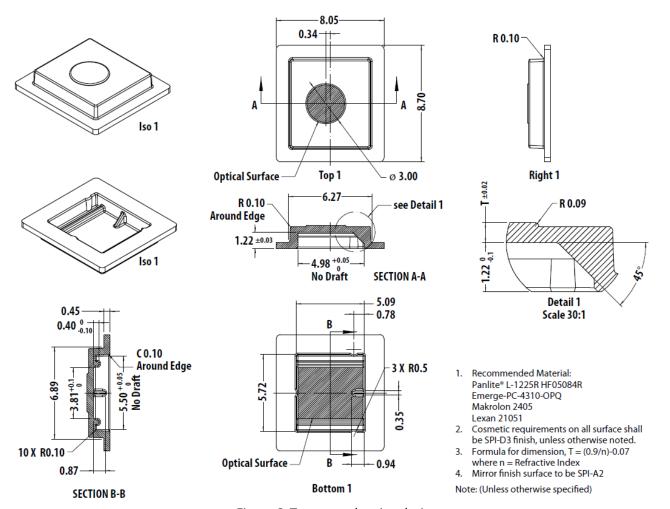


Figure 6. Top cover drawing design

Important notes for top cover designs:

- 1. The transmissivity of top cover window must be mini- mum 80% from 800 nm to 940 nm with a variation of less than 6% across this range of light spectrum.
- The Assert/ Deassert thresholds must be recalculated and set in the chip accordingly during initialization to address variation of surface reflection and transmissivity for custom cover designs. (See OFN firmware application note and OFN mechanical guide application note for further details).

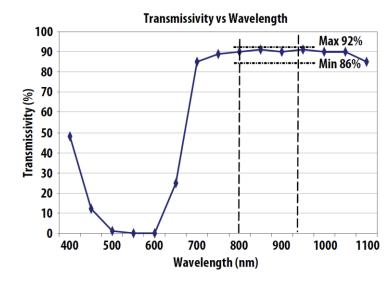


Figure 7. Example of Transmissivity vs. Wavelength curve for standard PixArt cover material

Soldering Profile

The recommended soldering profile is shown below.

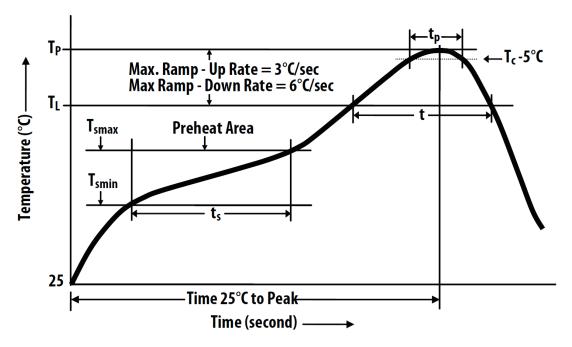
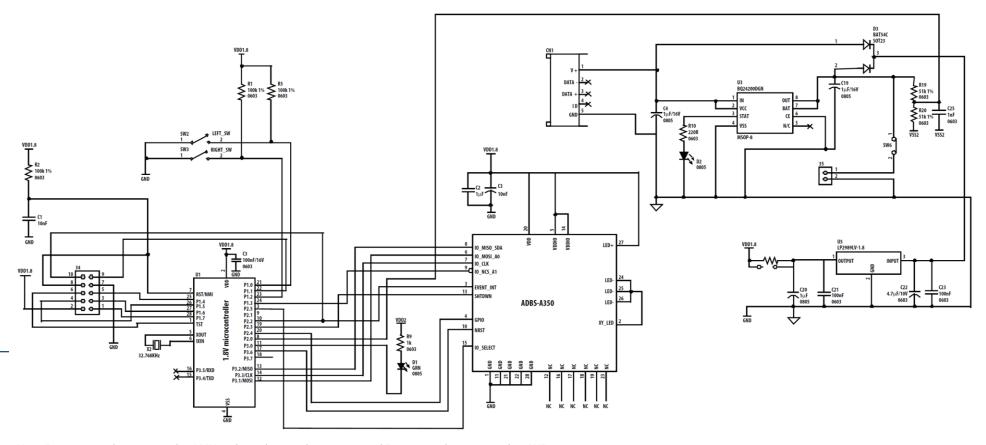



Figure 8. Recommended reflow profile

Profiling Information

Max rising slope	0.0°C/sec to 3°C/sec
Preheat time 150 – 200° C, ts	60 – 90 sec
Time above Reflow (TL = 220°C)	50 – 100 sec
Peak Temperature	225 – 260°C

Note: Dome + must be connected to MCU to detect button change state and Dome - can be connected to GND.

Figure 9. Schematic diagram for interface between ADBS-A350 and 1.8 V microcontroller via SPI $\,$

Regulatory Requirements

When assembled following PixArt Imaging recommendations, these regulatory requirements are applicable:

- Passes IEC 61000-4-3 and IEC61000-4-6 Class A Immunity limits
- Passes FCC or CISPR 22 Class B emission limits

Absolute Maximum Ratings

Parameter	Symbol	Minimum	Maximum	Units	Notes
Storage Temperature	Ts	-40	85	°C	
Lead Solder Temp			260	°C	For 1.4 seconds
Moisture Sensitivity Level	MSL		1		Referring to JEDEC-J-STD-020
Analog and Digital Supply Voltage	V_{DD}	-0.5	2.1	V	
I/O Supply Voltage	V_{DDIO}	-0.5	3.7	V	
LED Supply Voltage	V_{LED+}	-0.5	2.1	V	
ESD (chip only)			2	kV	All pins, human body model
					JESD22-A114-E
Input Voltage	V _{IN}	-0.5	VDDIO+0.5	V	
Latchup Current	l _{out}		20	mA	All Pins

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are the stress ratings only and functional operation of the device at these or any other condition beyond those indicated may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Minimum	Typical	Maximum	Units	Notes
Operating Temperature	T _A	-20		70	°C	
Analog and Digital Supply Voltage [1]	V_{DD}	1.7	1.8	2.1	Volts	Including VNA noise.
I/O Supply Voltage [2]	V_{DDIO}	1.65	1.8	3.6	Volts	Including VNA noise. Sets I/O
			2.8			voltages.
LED Supply Voltage	V_{LED+}	1.7	1.8	2	Volts	Including VNA noise.
Power Supply Rise Time	t_{VRT}	0.001		10	ms	0 to VDD. At minimum rise
						time, s/'
Power Supply Off Time	t _{OFF}	10			ms	Refer to section "POR During
for Valid POR (Power on						Power Cycling"
Reset)						
Power Off Voltage Level	V_{OFF}	0		300	mV	Refer to section "POR During
for Valid POR (Power on						Power Cycling"
Reset)						
Supply Noise Sinusoidal)	V_{NA}			100	mVp-p	10 kHz - 50 MHz
Speed	S			20	in/sec	Using prosthetic finger as
						surface
Transient Supply Current	I _{DDT}			80	mA	Max supply current for
						500ms for each supply
						voltages ramp from 0 to 1.8V

Notes:

- 1. For operating temperature of less than -20°C down to -30°C, minimum VDD of 1.8V must be met.
- 2. To ensure minimum leakage current, VDDIO should be greater than or equal to VDD.

Version 1.0 | 22 Jan 2016 | 11010AEN

Timing Specifications

Electrical Characteristics over recommended operating conditions. Typical values at 25° C, VDD=VDDIO=1.8V.

Parameter	Symbol	Minimum	Typical	Maximum	Units	Notes
Motion Delay After	t _{MOT-RST}	3.5		23	ms	From Hard reset or SOFT_RESET
Reset						register write to valid register
						write/read and motion, assuming
						motion is present
Shutdown	t_{SHTDWN}			50	ms	From SHTDWN pin active to low
						current
Wake from Shutdown	twakeup	100			ms	From SHTDWN pin inactive to
						valid motion. Refer to section
						"Notes on Shutdown", also note
						tMOT-RST
EVENT_INT Rise Time	t _{r-EVENT_INT}		150	300	ns	CL = 100 pF
EVENT_INT Fall Time	t _{f-EVENT_INT}		150	300	ns	CL = 100 pF
SHTDWN Pulse Width	t _{P-SHTDWN}	150			ms	
NRST Pulse Width	t _{NRST}	20			?s	From edge of valid NRST pulse

DC Electrical Specifications

Electrical Characteristics over recommended operating conditions. Typical values at 25° C, VDD=VDDIO=1.8V at default LED setting 13 mA.

Parameter	Symbol	Typical	Maximum	Units	Notes
DC average supply	I _{VDD}	1.56	2.13	mΑ	GPIO=SHTDWN=pull low, IO_MISO=NRST=pull high
current in Run	I _{DD_LED+}	1.34	1.90	mΑ	GPIO=SHTDWN=pull low, IO_MISO=NRST=pull high
mode	Total	2.90	4.03	mΑ	
DC average supply	I _{VDD}	0.2	0.3	mΑ	GPIO=SHTDWN=pull low, IO_MISO=NRST=pull high
current in Rest1	I _{DD_LED+}	0.15	0.2	mΑ	GPIO=SHTDWN=pull low, IO_MISO=NRST=pull high
mode	Total	0.35	0.50	mΑ	
DC average supply	I _{VDD}	0.04	0.07	mΑ	GPIO=SHTDWN=pull low, IO_MISO=NRST=pull high
current in Rest2	IDD_LED+	0.03	0.05	mΑ	GPIO=SHTDWN=pull low, IO_MISO=NRST=pull high
mode	Total	0.07	0.12	mΑ	
DC average supply	I _{VDD}	0.02	0.04	mΑ	GPIO=SHTDWN=pull low, IO_MISO=NRST=pull high
current in Rest3	IDD_LED+	0.01	0.02	mΑ	GPIO=SHTDWN=pull low, IO_MISO=NRST=pull high
mode	Total	0.03	0.05	mΑ	
Supply current	IDD_{SHTDWN}	1.54	26.00	μΑ	GPIO=SHTDWN=pull low, IO_MISO=NRST=pull high
during shutdown	VDD				
LED current during	IDD_{SHTDWN}		0.70	μΑ	GPIO=SHTDWN=pull low, IO_MISO=NRST=pull high
shutdown	VLED+				

Optical Finger Navigation Chip

DC Electrical Specifications

Electrical Characteristics over recommended operating conditions. Typical values at 25° C, VDD=VDDIO=1.8V at default LED setting 13 mA.

Parameter	Symbol	Minimum	Typical	Maximum	Units	Notes
VDDIO DC Supply	I VDDIO			20	μΑ	
Current						
Digital peak supply	IPEAK VDD			10	mΑ	
current						
LED+ peak supply	IPEAK LED+			35	mA	At LED register setting of 27 mA
current						
Input Low Voltage	VIL	-0.05	0	VDDIO	V	IO_MOSI_A0, IO_CLK,
				*0.35		IO_MISO_SDA, IO_NCS_A1,
						NRST, SHTDWN, IO_SELECT
Input High Voltage	VIH	VDDIO	VDDIO	VDDIO	V	IO_MOSI_A0, IO_CLK,
		* 0.7		+0.05		IO_MISO_SDA, IO_NCS_A1,
						NRST, SHTDWN, IO_SELECT
Input hysteresis	VHYS	100			mV	
Input leakage current	Ileak		±1	±10	?A	IO_MOSI_A0, IO_CLK,
						IO_MISO_SDA, IO_NCS_A1,
						NRST, SHTDWN, IO_SELECT
Output Low Voltage	VOL			0.2	V	lout = 1.2 mA
Output High Voltage	VOH	VDDIO-0.2	VDDIO-0.1		V	Iout = 600 PA
Input Capacitance	Cin			10	рF	MOSI, NCS, SCLK, SHTDWN

4-wire Serial Peripheral Interface (SPI)

SPI Specifications

Electrical Characteristics over recommended operating conditions. Typical values at 25° C, VDD = 1.8 V.

Parameter	Symbol	Minimum	Typical	Maximum	Units	Notes
Serial Port Clock Frequency	fsclk			1	MHz	Active drive, 50% duty cycle
MISO rise time	tr-MISO		150	300	ns	CL = 100 pF
MISO fall time	tf-MISO		150	300	ns	CL = 100 pF
MISO delay after SCLK	tDLY_MISO			120	ns	From SCLK falling edge to MISO data valid, no load conditions
MISO hold time	thold_MISO	0.5		1/fSCLK	μs	Data held until next falling SCLK edge
MOSI hold time	thold_MOSI	200			ns	Amount of time data is valid after SCLK rising edge
MOSI setup time	tsetup_MOSI	120			ns	From data valid to SCLK rising edge
SPI time between write commands	tSWW	30			μs	From rising SCLK for last bit of the first data byte, to rising SCLK for last bit of the second data byte
SPI time between write and read commands	tSWR	20			μs	From rising SCLK for last bit of the first data byte, to rising SCLK for last bit of the second address byte.
SPI time between read and subsequent commands	tSRW tSRR	500			ns	From rising SCLK for last bit of the first data byte, to falling SCLK for the first bit of the address byte of the next command.
SPI read address-data delay	tSRAD	4			μs	From rising SCLK for last bit of the address byte, to falling SCLK for first bit of data being read.
NCS inactive after motion burst	tBEXIT	500			ns	Minimum NCS inactive time after motion burst before next SPI usage
NCS to SCLK active	tNCS-SCLK	120			ns	From NCS falling edge to first SCLK falling edge
SCLK to NCS inactive (for read operation)	tSCLK-NCS	120			ns	From last SCLK rising edge to NCS rising edge, for valid MISO data transfer
SCLK to NCS inactive (for write operation)		20			μs	From last SCLK rising edge to NCS rising edge, for valid MOSI data transfer

Two – Wire Interface (TWI)

ADBS-A350 uses a two-wire serial control interface compatible with I2C. The parameters are listed below.

TWI Specifications

Electrical Characteristics over recommended operating conditions. Typical values at 25° C, VDD = 1.8 V.

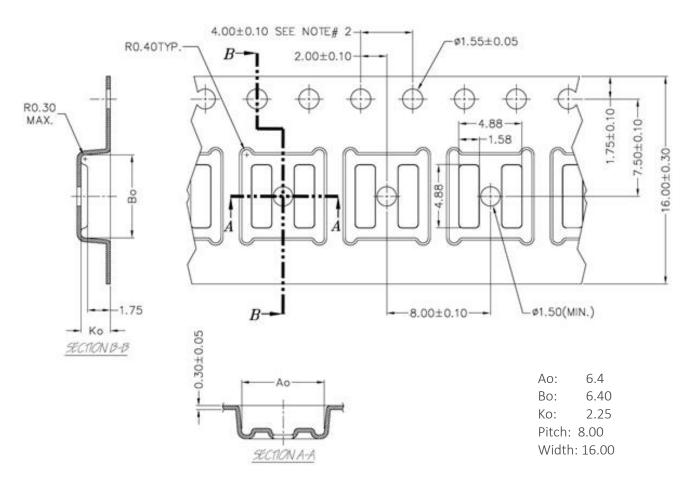
Parameter	Symbol	Minimum	Maximum	Units	Notes
SCL clock frequency	fscl		400	kHz	
Hold time (repeated) START condition. After this	tHD_STA	0.6	_	μs	
period, the first clock pulse is generated					
LOW period of the SCL clock	tLOW	1.0	_	μs	
HIGH period of the SCL clock	tHIGH	0.6	_	μs	
Set up time for a repeated START condition	tSU_STA	0.6	_	μs	
Data hold time	tHD_DAT	0(2)	0.9(3)	μs	
Data set-up time	tSU_DAT	100	_	ns	
Rise time of both SDA and SCL signals	tr	20+0.1C _b (4)	300	ns	
Fall time of both SDA and SCL signals	tf	20+0.1C _b (4)	300	ns	
Set up time for STOP condition	tSU_STO	0.6	_	μs	
Bus free time between a STOP and START	tBUF	1.3	_	μs	
condition					
Capacitive load for each bus line	Cb	_	400	рF	

Notes:

- 1. All values referred to VIHMIN and VILMAX levels.
- 2. A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHMIN of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- 3. The maximum has tHD_DAT only to be met if the device does not stretch the LOW period (tLOW) of the SCL signal.
- 4. CB = total capacitance of one bus line in pF.

Registers

The ADBS-A350 registers are accessible via the serial port. The registers are used to read motion data and status as well as to set the device configuration.


Address	Register	Read/ Write	Default Value	Address	Register	Read/ Write	Default Value
0x00	Product_ID	R	0x88	0x3c	Shutter_Max_Lo	R/W	0x71
0x01	Revision_ID	R	0x00	0x3d	Reserved		
0x02	EVENT	R/W	Any	0x3e	Inverse_Revision_ID	R	0xFF
0x03	Delta_X	R	Any	0x3f	Inverse_Product_ID	R	0x77
0x04	Delta_Y	R	Any	0x40-0x5f	Reserved		
0x05	SQUAL	R	Any	0x60	OFN_Engine1	R/W	0x84
0x06	Shutter_Upper	R	Any	0x61	OFN_Engine2	R/W	0x89
0x07	Shutter_Lower	R	Any	0x62	Resolution	R/W	0x22
0x08	Maximum_Pixel	R	Any	0x63	Speed_Ctrl	R/W	0x0e
0x09	Pixel_Sum	R	Any	0x64	Speed_ST12	R/W	0x08
0x0a	Minimum_Pixel	R	Any	0x65	Speed_ST21	R/W	0x06
0x0b	Pixel_Grab	R/W	Any	0x66	Speed_ST23	R/W	0x40
0х0с	Reserved	R	0x00	0x67	Speed_ST32	R/W	0x08
0x0d	Reserved	R	0x00	0x68	Speed_ST34	R/W	0x48
0x0e	Reserved	R	0x00	0x69	Speed_ST43	R/W	0x0a
0x0f	Reserved	R	0x00	0x6a	Speed_ST45	R/W	0x50
0x10	Reserved	W	0x00	0x6b	Speed_ST54	R/W	0x48
0x11	Reserved			0х6с	GPIO_CTRL	R/W	0x80
0x12	BUTTON_STATUS	R/W	0x00	0x6d	AD_CTRL	R/W	0xc4
0x13	Run_Downshift	R/W	0x04	0x6e	AD_ATH_HIGH	R/W	0x3a
0x14	Rest1_Period	R/W	0x01	0x6f	AD_DTH_HIGH	R/W	0x40
0x15	Rest1_Downshift	R/W	0x1f	0x70	AD_ATH_LOW	R/W	0x35
0x16	Rest2_Period	R/W	0x09	0x71	AD_DTH_LOW	R/W	0x3b
0x17	Rest2_Downshift	R/W	0x2f	0x72	QUANTIZE_CTRL	R/W	0x99
0x18	Rest3_Period	R/W	0x31	0x73	XYQ_THRESH	R/W	0x02
0x19	Reserved			0x74	MOTION_CTRL	R/W	0x00
0x1a	LED_CTRL	R/W	0x00	0x75	FPD_CTRL	R/W	0xfa
0x1b	Reserved			0x76	FPD_THRESH	R/W	0x2c
0x1c	IO_Mode	R/W	0x00	0x77	ORIENT_CTRL	R/W	0x00
0x1d	EVENT_CTRL	R/W	0x04	0x78	FPD_SQUAL_THRESH	R/W	0x40
0x28	Image_Dump	R/W	0x00	0x79	FPD_VALUE	R/W	0x00
0x2e	Observation	R/W	Any	0x7a	FPD_STATUS	R	0x20
0x31	Pad_Status	R	0x00	0x7b	SC_CTRL	R/W	0x25
0x32	Reserved			0x7c	SC_T_TAPNHOLD	R/W	0x45
0x33	Pad_Test_Out	RW	0x00	0x7d	SC_T_DOUBLE	R/W	0x1e
0x34	Pad_Function	W	0x00	0x7e	SC_DELTA_THRESH	R/W	0x19
0x3a	SOFT_RESET	W	0x00	0x7f	SC_STATUS	R/W	0x00
0x3b	Shutter_Max_Hi	R/W	0x0b				

Packing Information EMBOSSED LETTERING COLOUR SURFACE RESISTIVITY 16.0mm HEIGHT x MIN. 0.4mm THICK. PANTONE 285U ANTISTATIC COATED Ø329.0±1.0 $10^6 - 10^{11}$ PER OHMS SQUARE **DARK BLUE** CONDUCTIVE < 106 PER OHMS BLACK HUB 2. DATE CODE SQUARE Ø100.0±0.5 3. WHITE ANTISTATIC COATED 106 - 1011 PER OHMS SQUARE PANTONE 3295C ANTISTATIC COATED 4. **DARK GREEN** 106 - 1011 PER OHMS SQUARE 5. BLACK ANTISTATIC COATED 10⁶ – 10¹¹ PER OHMS SQUARE PANTONE 278c ANTISTATIC COATED 6. LIGHT BLUE 106 - 1011 PER OHMS SQUARE 7. WHITE ANTISTATIC COATED 10⁶ – 10¹¹ PER OHMS SQUARE 8. NATURAL ANTISTATIC COATED 106 - 1011 PER OHMS SQUARE 9. PANTONE 186C ANTISTATIC COATED $10^6 - 10^{11}$ PER OHMS SQUARE DARK RED Note: X in Part Numbering denotes colour code. **EMBOSSED LETTERING** 7.5mm HEIGHT $\emptyset 13.0 ^{+0.5}_{-0.2}$ **EMBOSSED LETTERING** 7.5mm HEIGHT 20.2(MIN.) **FRONT VIEW** EMBOSSED LINE (2x) 89.0mm LENGTH LINES 147.0mm Ø16.0 **AWAY FROM CENTER POINT** 15.9-19.49 Detail "X" **ESD LOGO RECYCLE LOGO** SEE DETAIL "X" Ø100.0±0.5 Ø329.0±1.0 1. * - Measured at hub area. 2. ** - Measured at outer edge. \angle SLOT 3. Flange and hub ultrasonic welded. $7.0 \pm 0.5(3x)$ 4. ▲ Internal Control ø13.0±0.2 for ON R20.0±0.5 $\emptyset 13.0 \pm 0.5(3x)$ **BACK VIEW**

Figure 10. Packaging tape, reel and packing information

22.4 MAX.*

Reel information

Notes:

- 1. Ao & Bo measured at 0.3 mm above base of pocket.
- 2. 10 pitches cumulative tol. ±0.2 mm.
- 3. () Reference dimensions only.

Figure 11. Reel Packing Dimensions